ZETA-FUNCTIONS OF HARMONIC
THETA-SERIES AND PRIME NUMBERS

ANATOLI ANDRIANOV

§1. PRIME NUMBERS AND THETA-SERIES

Speaking on rational prime numbers in various arithmetical sequences, it may
be noted that no essential progress have been achieved for more than century and
a half since famous Dirichlet theorem on prime numbers in arithmetic progressions
(1837). Absolutely mystical is still the question on prime numbers in quadratic
sequences, i.e., on prime numbers of the form an?+bn+c, where a, b, c are rational
coprime integers, and d = b? — 4ac is not a rational square. The situation is
not changing despite of considerable progress of the algebraic-analytical theory of
integral quadratic forms reached after Dirichlet. Our purpose here is to draw the
attention of numbertheorist to some analytical aspects of the theory of quadratic
forms possibly related to the problem.

In order to be more concrete, let us start from the the celebrated problem on
prime numbers of the form 1+n2. It is well known that the problem is closely related
to reductions prime modules of certain elliptic curves with complex multiplications
by Gauss integers a + v/—1b, say, the curve

y? = x(2? —1). (1.1)

Indeed, according to a formula of D.S. Gorshkov (see [Vin52, Ch.V,Question 8c])
decomposition of a prime number p of the form 4k + 1 into the sum of two squares
of integral numbers can be written with help of Legendre symbol as

1 2 p—1 2

1% r(z? —1) 1 x(z? —b)

p= <§ Z <T T 92 Z p ’
=0 z=0

where b is a quadratic non-residue modulo p. It is easy to see that the first square of

this decomposition is odd, whilst the second is even. Hence a prime p =1 (mod 4)
has the form 1 4 n? if and only if

%2 (@) Sy (1.2)
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It is well-known (see, e.g.,[Weild8]) that the points of projective closure of affine
elliptic curve (1.1) rational over the field of p elements form a finite abelian group

of order
p 2
-1

and so p has the form 1+ n? if and only if N, = p+ 1 + 2. Unfortunately, for
the time being details of behavior of numbers N,, for different prime p is an open
question, and there is no much hope to approach the problem this from side.

By the way, the criterium (1.2) can be reformulated quite elementary in the
terms of simple congruences modulo p for appropriate factorials: it follows from
known properties of the Legendre symbol that

() L oy

p

iy p—1 p—1 E
= rz (22-1)"7 =— <p31) (mod p),

and hence the criterium (1.2) is equivalent with the congruence

A B G L
_§<p1>_ 2[(%)!}2_i1 (mod p),

4

which can be written in the form

()] =t ot 0

It looks nice, but seems to be out of use for the problem of primes in the sequence
1+n?, like the Wilson theorem does not help to prove that there are infinitely many
primes.

Fortunately, our problem is closely related not only with reduction of elliptic
curves modulo prime numbers or congruences for factorials, but also with such
powerful tool of investigation of quadratic forms as modular forms for subgroups of
the modular group I' = SLo(7Z). Let us consider the function defined on the upper
half-plane of complex variable

H={:=2+iyeC|y>0} (i =+/—1) (1.4)

by a harmonic theta-series of the quadratic form q = 8(22 +3) (of the level | = 32)
(see §2).

F(z)=4 ) (nz + i) 716 ((n1+3)*+(n2+3)%)

ni,n2€%

>
= Z mzemz(m?+m§> = Z c(n)e )

m1, ma€EZL,
mi1=mo=1 (mod 4)
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where
c(n) = Z ma (1.6)

m1,ma€Z, mi+mi=2n,

mi=mz=1 (mod 4)
are Fourier coefficients of F'. The Fourier coefficients clearly satisfy relations ¢(1) =
1,and ¢(n) = O unless n = 1 (mod 4). In particular, ¢(p) = 0 if p is a prime number
of the form 4k + 3, but if p is a prime number of the form 4k + 1 and (a1, az) is
one of integral solutions of the equation z? + 22 = p, then all integral solution of
the equation are (£aj, tag) or (+asz, +a;), and hence all integral solution of the
equation yf + y3 = 2p are (£(a; — a2), £(ay + a2)) or (£(ay + a2), (a1 — az)).
Since clearly one can assume that a; = 1 (mod 4) and ay is even, it follows then
from (1.6) that

(a1 + a2) + (a1 — a2) = 2a; if as =0 (mod 4),

p) = { (—a1 +az) + (—a1 —az) = —2a4 if az =2 (mod 4).
In any case a prime number p of the form 4k + 1 has the form 1+ n? if and only if
c(p) = £2. (1.7)

The series (1.5) converges absolutely on H and uniformly on compact subsets
of H. Hence the series defines a holomorphic function on H. It is known that the
function F' is a modular (cusp) form of weight 2 for a congruence subgroup

To(32) = {(: ?) € SLy(Z) | v =0 (mod 32)}

of the modular group T' = SLy(Z) (see, e.g., [Sch39] or [Ogg69, Th.20]).

The problem of prime numbers satisfying condition (1.7) looks similar to the
problem of prime numbers p with a given value x(p) of a Dirichlet character yx
closely related to the problem of prime numbers in arithmetical progressions. In
the same way as the problem on values of characters on prime numbers can not be
approached in the terms of an individual character but has to take into account all
characters of a given module, the problem of separation of prime numbers p with
given value of the coefficient ¢(p), perhaps, should be considered in a wider content
of similar problems for another harmonic theta-series. In this paper we start to
move in this direction.

Note, by the way, that the problem of prime numbers of the form 1+n? is closely
related to the problem of twins in the ring O = Z[i] of Gauss integers, since if a
prime p has the form 1+ n?, then the numbers in — 1 and in+ 1 = (in — 1) +2 are
prime twins in the ring O, although this ring obviously contains no rational prime
twins. That, possibly, hints that the classical problem of prime twins for the ring
of rational integers have also a quadratic nature.

Contents of the paper. In §2 basic definitions and facts on harmonic theta-
functions together with their zeta-functions are reminded. §3 treats action of Hecke
operators on theta-functions. §4 is devoted to action of (hereditary) Hecke operators
on theta-series and deduction of corresponding Euler products. In §5 an example
of harmonic theta-series and zeta-functions of multiples of the sum of two squares
is considered.
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Notation. We fix the letters N, Z, Q, R, and C, as usual, for the set of positive
rational integers, the ring of rational integers, the field of rational numbers, the
field of real numbers, and the field of complex numbers, respectively.

A" denotes the set of all m X n—matrices with elements in A. If A is a ring
with the identity element, 1,, = 1 and 0,, = 0 denote the identity element and the
zero element of A7, respectively. The transpose of a matrix M is always denoted
by M. For two matrices A and B of appropriate size we write

A[B] = 'BAB.

§2. ZETA-FUNCTIONS OF HARMONIC THETA-FUNCTIONS

In this section we shall remind definitions of harmonic theta-functions and cor-
responding zeta-functions.
Let

q(X) = Z qagxaxg:% ’XQX = = Q[X] (X = (z1,...,2m))

be a real positive definite quadratic form in m variables with matrix

Q=0Q(q) = (Qaﬂ> + t(Qaﬂ)’

Since the form q is real and positive definite, there exists is a real matrix S such
that Q(q) = 'SS. A homogeneous polynomial of degree g in z1, ..., z,, of the form

P(X) = Po(X) = Po(5X),

where Py = Py(X) is an homogeneous polynomial of degree ¢ in x1, ..., x,, satis-
fying the Laplace equation

?Py(X)
Z (3£a)2 =0,

1<a<m

is called harmonic polynomial of degree g with respect to the form q. The definition
can be easily reformulated as follows: an homogeneous polynomial P of degree g
in x1,...,x,, is a harmonic polynomial with respect to the form q with the matrix
@ if it satisfies the differential equation

> @ ara X

op (9xa8x5 N
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It can be verified that a polynomial of the form
P(X) = ('2QX)7, (2.1)

where 2 € C™ is an isotropic vector of form q with matrixz @, i.e., a complex
m—vector satisfying

a(9) = 5 200 =0,

is a harmonic polynomial of order g with respect to the form q, and each harmonic
polynomial of order g with respect to the form q is a finite sum of such polynomials.

For a real positive definite quadratic form q in m variables with matrix ) and
a harmonic polynomial P of order g with respect to q, the theta-function of q
(of genus one) with harmonic polynomial P and parameters (U,V), where U =
Yugy ooy tm), V= Yv1,...,v,) € C™, is defined by the series

Op(=Q, (U V) = 3 PV - V) mi(-QIN-VIs2 UQN-1UQV) - (5 9)
NeZm

where z = x + iy € H. The theta-function converges absolutely for z in the upper
half-plane and converges uniformly in each half-plane {z € C | Im z > €} with
e>0.

According to a specialization of the general inversion formula [An95, Lemma
5.1], the theta-function (2.2) satisfies the following inversion formula

Z‘m/2

Vdet Q

®P(_1/Z; Q? (V7 _U>) = (_2)%4—9@]3* (Z; Q_17 Q(Uv V))? (23>

where

P*(X)=P(Q7'X)

is a harmonic polynomial of degree g with respect to the form q* with matrix Q!.
In order to define zeta-function associated to the harmonic theta-function (2.2)
we use the Euler integral

/ Yy le™Wdy =T(s) o * (>0, Re s > 0),
0

where I'(s) is the gamma-function. For Re s > % we obtain

/ ysto/2-1 (Gp(iy; Q, (U, V)) — ™ URY (v, g)) dy
0

o0
= Z P(N _ V) ezm'tUQN—m' tUQV/ ys+g/2—1e—7ryQ[N—V]dy
NezZ™, N£V 0

= (27T)_(5+9/2)F(s +¢/2) T UQV Z 27 UQN
NezZm, N£V

P(N —V)
q(N — V)sta/2?
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where
0 itV ¢Zm orVeZ™andg>0

V? - 2
pV:9) {P(O) if Vezmandg=0

q — the quadratic form (2.1). The function

. _ 2mi UQN P(N— V)
CP(Sv Q7 (U7 V)) - NeszN;éV € q(N _ V)s—|—g/2 : (24>

is called the (FEpstein) zeta-function of q with harmonic polynomial P and para-
meters (U,V). The zeta function converges absolutely for Re s > m/2 and con-
verges uniformly in every half-plane Re s > m/2 4 ¢ with € > 0. Thus, the zeta-
function is an analytic function for Re s > m/2.

The study of analytic continuation and the functional equation of the zeta-
function is based on Riemann’s method of deducing of analytical properties of
the zeta-function from the integral representation and the theta-inversion formula
(2.3). After standard consideration this leads to the following theorem (see, e.g.
Siegel Tata-lectures [Si61/65, Ch.I, §5]).

Theorem 1. The zeta-function (p(s; Q, (U,V)) of a real positive definite qua-
dratic form q in m wvariables with a harmonic polynomial P of degree g and pa-
rameters (U,V) has an analytic continuation into the whole s—plane, which is
an entire function of s if either g > 0 or if g = 0 and QU 1is not integral. If
g = 0 and QU is integral, then the zeta-function is meromorphic in the entire
s—plane with the only singularity at s = m/2, where it has a simple pole with
residue (2r)™/2/\/det QT'(m/2). In all cases (p(s; Q, (U, V) satisfies the func-
tional equation

(2m)~*T(s + ¢/2) e ™ UV (p(s; Q, (U, V)

= T ) T+ 9)/2 = 5) TV G (m/2 - 5 Q71 (-QV,QU))

where P*(X) = P(Q71X).

§3. HECKE OPERATORS

Starting from this section we assume a positive definite quadratic form q in m
variables is integral, i.e. has rational integral coefficients, in which case the matrix )
of q is even,i.e., has integral coefficients and even coefficients on principal diagonal.
The least number [ € N such that the matrix IQ ! is even is called the level of the
form q. As a particular case of [An95, Theorems 4.2-4.3] we obtain the following
transformation formulas for the theta-function (2.2) of an integral positive definite
quadratic form of level [: for each matrix

o= <3 ?) eFO(l):{(i ?) € SLo(Z) ’ v =0 (mod 1)}



EULER PRODUCTS 7

the theta-function satisfies functional equation

az+
vz + 0

P ; Q, (U, V) o) = pg(0)(v2 +6)* 190p(2; Q, (U, V)), (3.1)

where p1q(0) is an eight-root of the unity, which is equal to 1 if I =1, but if I > 1
and m is even, it has the form

o) =na (2 7)) =xal®

with the character xq of the quadratic form q , i.e., a real Dirichlet character
modulo [ satisfying conditions

XCI(_l) = (_1)m/2,

_1\ym/2 e
xq(p)=<( Y pdt@

) (the Legendre  symbol),

when p is an odd prime not dividing [, and

Xq(2) = 27™/2 Z eTiQIR/2,
RezZm™ [27m

if [ is odd.

In order to approach a natural question on Euler product factorization of zeta
functions, we shall now remind the basic definitions and the simplest properties of
(regular) Hecke—Shimura rings and Hecke operators for the groups I'g(l) appeared
above as transformation groups of theta-functions. We follow the general pattern
of the theory of Hecke operators on modular forms (see, e.g., [An87, Ch. 4], or
[An96, §2]) in the particular case of genus n = 1.

Let us denote by

Ho(l) = H(To (1), So(1))

the Hecke-Shimura ring of the semigroup

Yo(l) = {M = (CCL Z) € 72 ‘ det M > 0, ged(det M,1) =1, c=0 (mod l)}
relative to the group I'g (1) (over C). The ring H (1) consists of all formal finite linear
combinations with complex coefficients of the symbols 7(M ), which are in one-to-
one correspondence with double cosets I'g(1)MTo(I) C ¥o(l). It is convenient to
write each of the symbols 7(M), called also the double cosets, as the formal sum of
different the left cosets it contains (more precisely, of the corresponding symbols),

(M) = > (To()M') (M € %o(1)). (3.2)

M'elo(D\To(1)M Lo (1)
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Then each element T' € Hy(l) can be also written as a finite formal linear combi-
nation of different left cosets,

T=> calo)Ms) (ca €C). (3.3)

These linear combinations can be characterized by the the condition of invariance
with respect to all right multiplication by elements of T'g({):

To = an(ro(l)MaO’> =T forall o€ y(l).

In this notation, the product in Ho(l) can be defined by

zfr'::j{:ca(roa)ﬂfa)j%:cg(rou)ﬂfg)::j;;cacg(roa)ﬂ4aﬂ4gy

The ring Ho(l) is a commutative C—algebra generated over C by a denumerable
set of algebraically independent elements. As a set of algebraically independent
generators one can take, for example, double cosets of the form

() (D)

where p runs over all prime numbers not dividing [ (see, e.g., [An87, Theorem
3.3.23]).

In order to define Hecke operators on theta-functions we introduce certain linear
spaces containing theta-functions. Let us denote §,, the space of all complex-valued
real-analytic functions

F=F(z (U, V) :HxC" x C™ v C,

where H is the upper half-plane of the complex variable z. For a fixed integral
positive definite quadratic form q in an even number m of variables with matrix
() and a harmonic polynomial P with respect to q, we define an action of the
semigroup (/) on the spaces §,, by Petersson operators

o) M : F=F(z (UV))—
F|;M = jo.p(M, 2) *F(M(2); (U,V)'M), (3.5)

where
] ) b m
i=iar (7 1)) = at@ie st (3.6)

Xq — character of the quadratic form q, g is degree of P, and where

M{z) = <a Z) () = az+b

c cz+d
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It is clear that the function cz + d does not vanish on ¥((l) x H and hence the

same is true for each of the functions jo p(M, z). If matrices M = (Z Z) and

M, = (al bl) belong to ¥o(l) and M’ = (Z,/ Z:) = MM;, then an easy direct

c1 dy
computation shows that

(c- Mi{(z) +d)(c1z+dy)=z+d (z € H),

besides
Xq(d/) = Xq(cb1 +dd1) = xq(dd1) = xq(d)xq(d1),

since ¢ = 0 (mod [). These relations imply that the functions jo p(M, z) satisfy
relations of automorphic factors, i.e.,

jQ}p(M, M1<Z>>)jQ’p(M1, Z) :jQ’p(MMl, Z) for all M, M, € Zo(l), z € H.

This implies that the Petersson operators map the space §,, into itself and satisfy
the rule
F|jM|jM1:F|jMM1 (FESm, M, M, Ezo(l))

It allows us to define the standard representation 7" +— |;7" of the Hecke-Shimura
ring Ho(l) = H(To(1), Xo(l)) on the subspace

Sm(To(l)) ={F € §m | Fljo=F forall o €Ty(l)} (3.7)

of all I'y(!)—invariant functions by Hecke operators: the Hecke operator |1 on the
space §m(To(l)) corresponding to an element of the form (3.3) is defined by

FliT =) coF|iMo  (F=F(z (U,V)) € Fm(To(])), (3.8)

where |;M,, are the Petersson operators (3.5) corresponding to j = jo,p(M, z). The
Hecke operators are independent of the choice of representatives M, € I'g(1) M, and
map the space §.,,(T'o(1)) into itself. It follows from the definition of multiplication
in the Hecke-Shimura rings and (3.6) that Hecke operators satisfy

|jT|jT/ = |jTT/ for all T, T € Ho(l>

Hence, the map 7" +— |;T" is a linear representation of the ring (/) on the space
Sm(To(l)). The Hecke operators (3.8) on the space §,,(I'o(l)) are called regular
Hecke operators.

As it follows from functional equations (3.1), the theta-function (2.2) of an inte-
gral positive definite quadratic form q of level [ in an even number m of variables
with matrix () and a harmonic polynomial P of degree g relative to q, considered as
a function of z, and U, V', belongs to the space §,,(I'o(l)). Thus, this space contains
the images of the theta-function under the Hecke operators corresponding to the
generators (3.2) of the ring Ho(l). In particular, the space contains the images of
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the theta-function under the action of operators |;7'(p) with primes p not dividing
[, i.e., the functions

Op(z @, (U,V))iT(p)

= Z jo.p(M, 2)"'0p(M(z); Q, (U,V)'M).
MeFo(l)\Fo(l)<1 0>r0(z)

Since one can take

R (R R (Y S CRTON R}

this image can be written in the form

Or(25 Q, (U V)iT(p) = (xa()p"+)” Z@(
b=0

wp(pz@ e ))

= (Xa(P)P* ™)~ Z@ ( (U+prV))
=0

The following particular case of [An09, Theorem 6.3] shows that the images of
the theta-function under the Hecke operators corresponding to elements 7T'(p) with
primes p in some cases can be written as finite linear combinations with constant
coefficients of similar theta-functions.

Theorem 2. Let q be an integral positive definite quadratic form in even number
of variables m = 2k, | — the level of q, xq — the character of q, and let P be
a harmonic polynomial of degree g relative to the form q. Then, for each rational
prime number p not dividing the level [, the following explicit formulas for the action
of Hecke operator |j1'(p) with automorphic factor j = jo p of the form (3.5) on the
theta-function (2.2) of genus 1 with harmonic coefficient form P hold and arbitrary
parameters U, V: if xq(p) = 1, then

Op(z @, (U,V))iT(p)

:ggﬁ) > Opp-iplz p QD] pDTHU V), (3.10)
P™ bea(@ py/am

where
1 if k=1,

[+ i k>0
A(Q,p) = {D ez ’ prQ[D] s even and det p'Q[D] = det Q}

em) = {
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is the set of all automorphes of Q with multiplier p, A™ = GL,,(Z), and where
(Plp~'D)(X) = P(p~' DX),
but if xo(p) = —1 and k =1, then

©r(z Q, (U, V)T (p) = 0. (3.11)

It follows from the obvious relations
Opa(z; QA AN (U, V) = Op(2; Q, (U, V)) for each A € A" = GL,,(Z),

where (P|A)(X) = P(AX), that the sum to the right of (3.10) does not depend on
particular choice of representatives D € A(Q, p)/A™.

Generally speaking, the set A(Q, 1) can be empty, but it is not empty, when p = p
is a prime number satisfying xq(p) = 1. It is clear that A(Q, p)A™ = A(Q, 1), and
so the group A™ operates on each of the sets A(Q, ) by right multiplications. Since
all automorphes of A(Q, 1) are integral matrices of fixed determinants =4 ;/2, it
follows that each set of right classes of automorphes A(Q, p)/A™ modulo A™ is
always finite.

Standard applications of Hecke operators to Euler factorization of zeta functions
of modular forms are based on consideration of common eigenfunctions of the oper-
ators. Although Theorem 2 shows that some images of theta-functions under Hecke
operators are linear combinations of theta-functions, it gives no direct way to build
eigenfunctions from linear combinations of theta-functions. A possible outcome
can be found in a replacement of theta-functions with variable parameters U, V'
by corresponding theta-series obtained by suitable numerical specializations of the
parameters. A variant of such specialization will be discussed in the next section.

§4. ACTION OF HEREDITARY HECKE OPERATORS
ON THETA-SERIES AND EULER PRODUCTS

Here we shall consider action of the regular Hecke—Shimura rings H(l) by Hecke
operators on theta-functions (2.3) with specialized parameters (U, V), i.e. on the
corresponding theta-series. Resulting hereditary Hecke operators inherited from
operators (3.8) acting on theta-functions with variable parameters are in general
different from standard Hecke operators on theta-series considered only as functions
in z belonging to the upper half-plane, because these theta-series are not necessarily
invariant with respect to the group the form I'g(l). The Hecke operator inherited
from an operator |7 will be denoted below by ;7.

We have seen in §2 that zeta functions of harmonic theta-functions have good
analytic properties. In order to consider another essential feature of arithmetical
zeta functions, the Euler product factorization, we follow classical approach to this
problem initiated by E.Hecke in [He37] and based on consideration of eigenfunctions
of Hecke operators acting on modular forms. In order to apply Hecke theory we
have first to pass from theta-functions, which are not modular forms, to suitable
modular forms.
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Starting from the theta-function (2.2) of an integral positive definite quadratic
forms q in even number of variables m = 2k of level [ with even matrix ) and with
harmonic polynomials P of degree g relative to q, we shall specialize parameters of
the theta-function to be rational columns of the form

U=0, V=I1""L with L € Z™ satisfying congruence QL = 0 (mod ). (4.1)
Then the theta-function turns into the theta-series

Op(z QIL) = Op(2: Q, (0,17'L)) = Y P(N —17'L)em=QIN=E - (4.9)

Nezm
with the Fourier expansion

z; QIL) = ZTQP n, L)e (4.3)
where
ro.p(n, L) = > I=9P(M) (4.4)
MeZ™, M=L (mod 1)
Q[M]=2In

are Fourier coefficients. Note that the theta-series (1.5) mentioned in §1 is propor-
tional to the series (4.2) with q = 8(z% +23), Q = (16 0 ), =32, L= (:8), and

0 16 8
By formula (3.9) we obtain the following formulas for the action on the theta-
series (4.2) of (hereditary) Hecke operators [;T'(p) with primes p not dividing the
level [ of q:

©p(z; Q\L)I}‘T(p)
— Z <Z+b , (7oL, 1pL)) +0p (pz Q, (0,17'L))

1 - 1t —2
_ N 1pL e =L QIN—1"pL]+21 b 'LQN—1"*bpQ[L])
K+ Z E:
Xa(p)p QNGZm

+ Z P(N—l_1L> 87msz[N—l_1L]

Nezm
. b 1 Q[N—1"1pL]
= P(N — [ "pL
Xa(P)p* o Z; ( e’
;a(N)=0 (mod p)
+ Y P(N —171L) emipzQIN-UTL] (4.5)
Nezm
because, by readily verified identity,
z+b

Q[N — I 'pL] + 207 ' 'LQN — I 2bpQ|L]

= EQ[N — 17 'pL] + gQ[N —I7'L] + 207 'LQN — I 2bpQ|L]

—2QIV —1pL) + QN = 2QIN — 17 pL) + Zq(V),
p p p

SEES B~



EULER PRODUCTS 13

we have

p—1
mi( =L QIN—1 pL]+21 b 'LQN 1" 2bpQ[L]
>

b=0

— AN Y B %Q[N_z—lpux{p if p [ a(NV),

p = A .
Pt 0 ifpfq(N).

Writing the series (4.5) as a Fourier series, in the notation (4.4) we get the formula
Op(z QIL)[;T(p)
2mwizn

- 7;) (mwf(nn pL) +rq.p(n/p, L)) e, (4.6)

where the second term in parenthesis is present only if p divides n.

Let us consider now a linear combination of the theta-series (4.2) written in
the form (4.3) with constant coefficients ®(L) depending on L modulo [, i.e., the
function

F=0¢pr(zQ) = Y  ®L)Op(z Q|L)

LEZ™ )17,
QL=0 (mod )

=) > @(L)rqp(n, L) |e (4.7)

LEZ™/LZ™,
QL=0 (mod )
with Fourier coefficients
LEZ™/IZ™,

QL=0 (mod )

= > 1=9®(M)P(M). (4.8)
MeZ™, Q[M]=2nl
QM=0 (mod h)

From formula (4.6) we obtain

F[iT(p)=O¢,p(z: QT = Y ®L)Op(z QIL);T(p)

LeZ™JIZ™,
QL=0 (mod )

> 1 2wizmn
- ¥ <1><L>§j(—k_1+gm,p<np, pL) +ro.p (n/p. L))e z
m m n=0 Xq(p)
LEZ™ /L™,
QL=0 (mod )
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— - k = E E ®(L)rg,p(np, pL)e e
n= O LGZm/l Zm
QL=0 (mod l)

n

+> rgp(n/p, ®)e T (4.9)
n=0

In order to compute the first sum in agreeable shape we assume now that the
coefficient function ® satisfies a homogeneity condition of the form

®(al) = p(a)®(L)  (Ya € Z, ged(a,l) = 1) (4.10)

with a function ¢ : Z/IZ — C. If ® is not identically zero, it is easy to see that the
function ¢ must satisfy the conditions

o»(1) =1, ¢(ab) = ¢(a)p(b) if @ and b are prime to [, (4.11)

in particular, a value ¢(a) with argument a prime to [ must be a root of the unit.

Returning to (4.9), if ® satisfies the condition (4.10), then, since p does not
divide [, by replacing the sum over L by the sum over p’ L, where p’ satisfies p'p = 1
(mod 1), we obtain

> ®(Lyrqplnp,pL)= Y. @@'L)rg.r(np, p'pL)
LezZ™/lz™, Lez™/lz™,
QL=0 (mod 1) QL=0 (mod )
=o() Y. ®(L)rq.p(np, L) = (p)ro.p(np, @),
LEZ™/IZ™,

QL=0 (mod I)

because the number ¢(p') = ¢(p)~! = ¢(p) is complex conjugate to ¢(p). Substi-
tuting the last expression in (4.9), we finally get the formula

F\jkT( ) = @q> P(Z' Q)5 T(p)

= Z < k 5 7Q.p(np, ®) +7q.p (n/p, q))) e

2wizn

(4.12)

Suppose now that the function F' = Og, p(2z; Q) of the form (4.7) is an eigen-
function for the operator |J7'(p) with the eigenvalue Ap(p). Then, according to
(4.12), the Fourier coefficients (4.8) of F' satisfy relations

e ()0, ®) = B plap, ®) + 1. /. ), (4.13)

provided that the function ® satisfies condition (4.10).
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The relations (4.13) with numbers n # 0 differ by powers of a fixed prime p can
be considered as a recursion relations and used to sum up formal power series of

the form
o0

Ryn(t) = rqr(®n, ®)t°
6=0
Suppose that n is not divisible by p, then by (4.12) we have
o(p) - 5+1, 5 —1 )
Ar(P)Rp, n(t) = ————F—— r + D)t° + rp n, ®)t
( ) P ( ) Xq<p)pk_1+g ; Q,P ( Z Q, )

_ 9
Xaq(p)pF—1+9t
from which it follows that

t) = irQ,p(p‘sn, ®) 10 (4.14)

(Rp,n(t) =7q,p(n, ®)) + 1Ry n(1),

= (1= " g ()P Ar (D) + 05 Hxa ()6 (P)?) " ro.p(n, ®).
These summation formulas will be used bellow for Euler product factorization
of zeta-functions corresponding to eigenfunctions of Hecke operators on spaces
spanned by theta-series (4.2).
We remind that the zeta-function (2.4) of a theta-series (4.2) is defined by the
Dirichlet series

P(N —17'L) >~ 70, p(n, L)
- Q|L) = =Y e 4.15
CP(S Q| ) Nezm§¢Z_1L q(N — - 1L) B T; (n/l>s—|—2 ( )

where 7o p(n, L) are the Fourier coefficients (4.4) of the theta-series. Hence, the
zeta-function of the linear combination (4.7) has the form

sty n, ®
(s, F)=" > ®L)p(s; QIL) =) j;f%( ) (4.16)
LEZm/lZm, n=1
QL=0 (mod 1)

where 7o p(n, ®) are the Fourier coefficients (4.8) of . This zeta-function together
with zeta-functions (4.15) converges absolutely for Re s > k = m/2, and uniformly
in every half-plane Re s > k + € with € > 0. Thus, ((s, F') is analytic function for
Re s > k.

If we suppose that the function F' is an eigenfunction for the operator |J*T (p) with
the eigenvalue Ag(p), where p is a prime number not dividing [. Then, according
to the identity (4.14), we can factor the function ((s, F') in the half-plane Re s > k
in the form

-y oy MHrer(in9)
(p6n>s—|—§

0=0 n>1,n#0 (mod p)

1

_ <1 P T Na(P)9(p)AR(p) pk‘lxq(p)¢(p))_ 3 +Erg.p(n, @)

ps p28 ns—l—%

nZ0 (mod p)
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Assuming that function F' is an eigenfunction for all operators |J*T (p) with prime
p not dividing [ and applying the last relation to each of the primes, we obtain.

Theorem 3. Suppose that a linear combination F' of the form (4.7) of theta-series
of an integral positive definite quadratic form q of level | in even number of variables
m = 2k with a harmonic polynomial P of degree g, where coefficients ® satisfy
the condition (4.10), is a common eigenfunction of (hereditary ) Hecke operators
;T (p) for all prime numbers p not dividing | with eigenvalues Ap(p). Then the
zeta function ((s, F') of F' has the factorization into an absolutely and uniformly
convergent in every half-plane Re s > k + € with € > 0 Fuler product of the form

2 I5tS8ro p(n, @
(s, F) =) §5+%( ) (4.17)
n=1

pk-lxq<p>¢<p>)‘1 S 1574 1y p(n; @)

nsts

k—14+4 q Y
- 11 [P X (jj]l)cb(p) F(p) N .

PEP, pil n|l>e
where P is the set of all positive rational prime numbers, and the notation n|l™
means that n divides a power of 1, i.e., each prime divisor of n divides [.

§5. EIGENFUNCTIONS FOR THETA-SERIES OF
MULTIPLES OF THE SUM OF TWO SQUARES

According to Theorem 3, for applications of Hecke operators to Euler factoriza-
tion of zeta-functions of theta-series one has to build common eigenfunction of the
operators and find corresponding eigenvalues. In the case of theta-series of one vari-
able so fare the only way to approach this problem is to use explicit formulas, like
formulas of Theorem 2, expressing images of the theta-series under Hecke operators
through similar theta-series. In this section we use this approach to the simplest
case of harmonic theta-series binary quadratic forms proportional to the sum of
two squares. General case positive definite integral binary forms is the question of
a future.

We shall consider here action of (hereditary) Hecke operators on harmonic theta-
series (4.2) of a quadratic form

Q(X)=t(x?+23) (t=1,2,...) with the matrix Q = (20t QOt)
of level | = [(Q) = 4t, where a column L € Z? satisfies QL = 0 (mod 1), that is
L =0 (mod 2), and so can be written in the form L = =27, with T € Z/2tZ, and
where harmonic polynomial P is one of the binomials

PE(X) = (1, £)X)Y = (z1 £ ix5)7 (X = (‘“ )) .

Z2

The character x4 of the form q is defined on prime numbers by conditions x4(p) = 0
p—1

if p |1, and xq(p) = (—1)"7, otherwise.
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Each such theta-series has the form

Op(z Q| —2T) = > P(N + (2t)717)em= QN +E07T] (5.1)
Nezm™

In the notation and under the assumptions of the Theorem 2, for the theta-series
(5.1) and a prime p not dividing the level [ = 4¢, we have in the case x4(p) = 1,
ie.,if p=1 (mod 4), the identity

Op(z Q- 20);T(p) = > Opp-iplz; p 'QID] | —2pD7'T), (5.2)
DEA(Q, p)/A*

and the identity
Op (2 Q| = 21)[;T(p) = 0 (5.3)

if xq(p) = —1, i.e,, p=3 (mod 4).

Thus, looking for eigenfunctions, it suffices to consider only the case p = 1
(mod 4). Note that in this case each right coset DA% € A(Q, p) contains a rep-
resentative D’ with positive determinant, and such representative is unique up to
a right factor from the modular group I' = SLs(Z). Then it easy follows that
the mapping DA% — D'T defines bijection of the sets of classes A(Q, p)/A? and
AT(Q, p)/T, where AT(Q, u) = {D € A(Q, p) | det D > 0} is the set of all proper
automorph of Q with multiplier p. Thus, we can rewrite the formula (5.2) in the
form

Op(z QI —2T);T(p) = >, Opp-ip(z; p 'Q[D] | —2pD~'T)
DEA+(Q,p)/T (5.4)

_ Z Z P(p_lD(N + (Qt)_lpD_lT)) eﬂ'iZpilQ[D][N-F(Qt)ilpDilT].
NeZ? DeAT(Q,p)/T

Since p does not divide [, it easily follows that the matrix p~*Q[D] for each
D € AT(Q, p) has the same divisor ¢ as matrix @ and so is of the form @',
where Q' is an even primitive matrix of determinant det Q' = det Q/t*> = 4, which,

therefore, has the form Q' = U (5 g) U with U € T' (class number of the sum of

two squares is one). Thus, representatives D of classes AT (Q, p)/T can be chosen
so that p~1Q[D] = @ and the sum over A*(Q, p)/T can be replaced by the sum
over the set RT(Q, pQ)/E™, where

RY(Q, pQ) = {D € Z3 | det D > 0, Q[D] = pQ}

is the set of proper represetations of pQ by Q and

E+:{U6F|Q[U]=Q}={<(1) (1))’<_01 _01) <_01 (1))<(1) _01)}
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is the group of proper units of Q. Thus, we can rewrite (5.4) in the form

Op(z; Q| —27)|iT(p) (5.5)
= Z Z P(p—lD(N + (Qt)—lpD—lT)) esz[N-i-(?t)*lpD’lT].

NeZ? DeRT(Q,pQ)/E*

Since p = 1 (mod 4), it is easy to see that the set RT(Q, pQ) can be taken in the
form

R+(Q,pQ):{<_ab 2) |a,b € Z, a2—|—62:p} (5.6)

and consists of 8 matrices, whilst a set of representatives R*(Q, pQ)/E™ can be
taken, for example, in the form

RY(Q, pQ)/E"

:{(—ab Z)(Z _ab)|a,beZ,a2+62=p,0<a<b}={D17D2} (5.7)

and consists of 2 matrices.
Let us consider now the action of operator |{7'(p) on a linear combination of
theta-series (5.1) with a coefficient function ®, which will we shall write in the form

O(T) = p(ty +its) (T = (jf;) €T € 22272, t, +its € O = Z[i]/2tO) (5.8)
with, for example, P(X) = PT(X) = (21 +ix2)Y, i.e., on the theta-series

F= Y  &T)0p(z Q| —2T) (5.9)
TEeZ?/2t72
- Z Z O(T)P(N + (2t)1T)e2™i= QIN+(20) 7' 7]
NeZ2 TeZ?/2t72

_ (Qt)_g Z 80(151 + ZtQ)((Qtnl —|—t1) +2(2tn2 + t2))9e%tz((2tn1+t1)2—|—(2tn2+t2)2)

ni,ne €7,
t1,t2 GZ/QtZ

= (2t)_g Z cp(ml -+ img)(ml —|—im2)g e%(mf‘kmg)

mi,ma€Z

From formulas (5.5), we obtain

FiT(p)=| > ®TOp(z Q| -2T) | [T(p) (5.10)
TeZ?/2tZ?
=) > > oT)P(p 'D(N + (2t) 'pD'T))

N€EZ2 DERY(Q,pQ)/E+ TEZ?/2t7?
% 67rizQ[N—|—(2t)_1pD_1T]

=22 S° S DT)P(p DN + (26) 7)) = QN+
N€Z? DeERY(Q, pQ)/E+ T€L?/2t7?
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where we have replaced on the last step T' by p’ DT with an inverse p’ of p modulo

2t. Using the notation (5.8), for D = D; = (_ab Z) , Dy = (Z _ab) of the set of

representatives (5.7), we have

oo = (v (% 1) (] )) o (v (0 50))

= (p/(aty + btz + i(=bt1 + at2))) = o(p(a +ib)(t1 + its))

wmn-s(s (3 2) (1) - (2154)

= p(p'(aty — bta +i(bty + at2))) = (p'(a — ib)(t1 + its)).

and

Suppose now that the function ¢ is multiplicative, i.e., satisfies

p(aB) = p(a)p(B) (a, B € 0/210), (5.11)

in particular, (1) = 1, if ¢ is not identically zero. Then the above formulas imply
relations

B(p'DiT) = p(p'(a + 1) (t1 + it2)) = (p'(a +ib))(T),
and

D(p'DaT) = p(p'(a — ib)(t1 + it2)) = @(p'(a — ib))(T).

On the other hand, say, for the harmonic polynomial P = PT(X) = ((1, i) X)?, we
have

Plp~'DiX)=((1,)p D1 X))’ = (p~*(a —ib, b+ia)X)’
= (P (e = )(1, )X)" = (p~'(a = b)) P(X),

and, similarly,
P(p~'DyX) = (p~'(a+1b))? P(X).

Hence, if the coefficient function (5.8) satisfies the multiplicativity condition (5.11),
the formula (5.10), say, for P = P* can be rewritten in the form

i (5.12)
=3 Y @@DiT)P(pT Di(N + (2t)71T))emi# QN HEO ]
N€Z2 TeZ? /2t7?
+ 3 N @@ D) P(pT DN + (26)7IT))em = QINHEO ]
NeZ? T€Z? /272
=3 Y (W) =)+ el a - ) (@ + b))
NeZ2 TeZ? /2t7?
x ®(T)P(N + (Zt)_lT))eﬂ'izQ[N—|—(2t)_1T]

_ % (p(a+ib)(a— )7 + p(a — ib)(a + ib)9) F = Ap(p)F,
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i.e., the linear combination F' is an eigenfunction of the operator [;7T'(p) with the
eigenvalue

Ar(p) = 90](372/) (p(a+ ib)(a — ib)? + p(a — ib)(a + b)) . (5.13)

The above consideration allows us to apply Theorem 3 to the zeta-function

(o, F) 5 @(T)P(NJr (2t)~ Z 5.14)

q(N + (2t)~1

MI‘Q

NezZ?, Te7?/2t72,
N+(2t) "1 T#0

of the linear combination (5.9) in the case of harmonic polynomials P = P*, since
clearly the coefficient function & satisfies the condition (4.10), where the function
¢ : Z/2t7 is equal to the restriction on Z C Z[i] of the function ¢. Then we obtain
that the zeta-function (5.14) has the factorization into an absolutely and uniformly
convergent in every half-plane Re s > 1 + ¢ with € > 0 Euler product of the form

—1

(s = 1 (1_pgxq(p)so(p)kp(p)+xq(p)90(p)) 3 cr() 515

s 2s s+4°
pEP, pt2t p p n|(2t)>°

where Ap(p) is the eigenvalue (5.13) if p = 1 (mod 4), and Ap(p) = 0if p = —1
(mod 4).

It turns out that Euler product factorization of the zeta-function (5.14) with
multiplicative coefficient function (5.8) can be obtained in more explicit form and
quite elementary without any use of Hecke operators, but just by means of inter-
pretation of the zeta-function as an L—functions of the Gauss numbers field with
a Hecke character. Really, the zeta-function (5.14) of the the linear combination
(5.9) with the coefficient function (5.8) can be written in the form

Z w(my + itmg)(my + img)9
(my +imp)*+E

((s, F) = (20)°
m1,m2€Z, (m1,m2)#(0,0)

g g 1 g
— <2t)s—§ (p(O&)Of — <2t)s—§ Z ¢(O‘> ,

acO, a#0 N(O{)§ N(O_/)S acO, a#0 N(O_/)S (516)

where O = Z[i] is the ring of Gauss integers, and ¥(a) = p(a)a?/N(a)2. For
a # 0 all associated numbers «, —a, ia, —ia are different, have the same norm,
and the sum of corresponding terms of sum (5.16) is

P(a) Y(—a)  Plia)  P(—ia)
N(a)® * N(—a)s + N(ia)® + N(—ia) (5.17)

= (1) + (1) + (@) + (1))

Q
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It follows that if
o(—1) = (=1)9""  or (i) = (-1)7F, (5.18)

then we have
Y(=1) = (=) (-1)? = (=17 (-1)? = -1
$(i) = p(i)it = (~1)7H1i9i8 = (~1)7%}(~1)9 = 1,

In every case each of the sums (5.17) is equal to zero, and so the whole zeta-function
((s, F') is identically zero. But if the zeta-function is not identically zero, then there
is a nonzero sum of the form (5.17), which implies that

p=91) +9(=1) + () + (=) = 1+ @(=1)(=1)7 + (i) i + ¢(=i)(=2)? # 0.
Since ¢ is multiplicative and ¢(1) = 1, we get
p(i)r = @(i) + o(=i) (=1)? + p(=1)i + (=1)? = (=)~

It follows that (¢(i) — (—i)9)k = 0, i.e., (i) = (—i)9. Hence we conclude that, for
a principal ideal a = aO = («) of the ring O with generator «, the value

is independent of the choice of the generator a, and so each of the sums (5.17)
is equal to kip(a)/N(a)® = 4¢¥((«))/N((«r))®. Therefore the zeta-function can be
written in the form

¥(a)

N(a)*’

((s, F)=4(2t)*% ) (5.19)

a7#(0)

where a ranges over all nonzero integral ideals of the ring @, N(a) is the norm of
a, and

pa)o?
N(a)?

in addition, the function a + % (a) does not depend on the choice of generator a of
the ideal a and is multiplicative on the semigroup of nonzero integral ideals of the
ring O.

Using the multiplicative theory of ideals of the ring of Gauss integers, we come
to Euler product factorization of the form

=i (- 3) < T 3)

p P plp

Y(a) = if a=a0; (5.20)

where p and p range over all nontrivial prime ideals of the ring and all rational
prime numbers, respectively.

This observation hints that, at least in the case of zeta-functions of binary qua-
dratic forms proportional to the sum of two squares, it suffices to take into account
only Hecke L—functions.
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